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Abstract-The convective instability in two-dimensional enclosures containing a fluid-saturated porous 
medium with an insulating baffle extending vertically from the bottom boundary is investigated. The baffle 
influences the stability through its height and its horizontal position. It is found, in general, that a taller 
baffle does not necessarily result in a more stable state, the optimum height of the baffle changes as its 
position varies ; a baffle located at the middle or at a position with I = ,/(k(k+ I)), k = I, 2,. . where 1 
accounts for the normalized distance from the baffle to the left wall, corresponds to a relatively more stable 
state; while a baffle coinciding with a dividing streamline has no influence on the stability. These findings 
are concluded on the basis of the results obtained by a linear stability analysis covering a wide range of 
relevant parameters and are believed to be applicable to some engineering designs, such as the insulating 

systems for building and heat exchangers. 

1. INTRODUCTION 

BUOYANCY-driven natural convection in enclosures 
containing a fluid-saturated porous medium has 
received much attention recently because the data con- 
cerning buoyant enclosure flow are in great demand 
for many traditional and contemporary applications 
such as insulating systems for buildings and heat 
exchanger devices, energy storage systems, material 
processing and geothermal systems. Reviews of pre- 
vious works and applications are provided by, for 
example, Cheng [l] and Bejan [2]. Another reason 
leading to study of the convection in porous medium 
enclosures is the interest in fundamental phenomena 
of instability and transition of the convective flow. 
Due to the simplicity of geometry as well as the ther- 
mal boundary conditions, the base solutions for 
velocity and temperature fields are so readily available 
that their instabilities and the subsequent flow tran- 
sitions, which may eventually end up with a turbulent 
flow, can be more easily studied (see Caltagirone [3], 
Horne and Caltagirone [4], Steen and Aidun [5], and 
Stamps et al. [6]). 

The natural convection in a horizontally infinite 
porous layer bounded above and below by two iso- 
thermal rigid plates has been studied by Horton and 
Rogers [7]. By utilizing a linear stability analysis, they 
were able to determine the critical Rayleigh number, 
based on the depth and permeability of the porous 
layer, to be 4n2 for the onset of convection from a 
quiescent conduction state. Later, experiments were 

t On leave from Michigan State University, East Lansing, 
MI 48824, U.S.A. 

conducted by numerous investigators to verify this 
criterion, for example, Katto and Masuoka [8], 
Buretta [9], and Chen and Chen [lo]. The infinite- 
layer results are expected to be good approximations 
to those of confined enclosures of large aspect ratios 
Q (width to height). As B decreases, nevertheless, the 
presence of two vertical side walls will significantly 
influence the stability as well as the bifurcation charac- 
teristics of convection [3, 111. As a consequence, the 
physical phenomena of convective flow becomes 
increasingly complex and the critical Rayleigh num- 
bers for the onset of convection as well as the onset 
of bifurcation differ considerably from those to the 
infinite-layer case. 

In order to study from another perspective the 
influence of the presence of a vertical wall on the 
convective instability in a porous medium, we con- 
sider two-dimensional enclosures in which a vertical 
partition is introduced (Fig. 1). The vertical partition, 
or baffle, can either completely or partially divide the 
enclosure into two compartments depending on the 
value of p, the height of the baffle normalized by the 
height of the enclosure. For /l = 0, the baffle does not 
exist. For /l = 1, the baffle divides the enclosure into 
two separated compartments. For 0 < /3 < 1, the 
baffle partially divides the enclosure into two regions, 
which are connected to each other through the gap 
between the tip of the baffle and the top boundary. 
As a result of introducing the vertical baffle, the con- 
vective flow patterns are no longer simple rectangular- 
like cells as usually seen in either the infinite-layer case 
or in the case of a confined enclosure without baffle. 
The change of the flow pattern is associated with the 
change of convective stability as well as the resultant 
heat transfer. The main purpose of the present paper 
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NOMENCLATURE 

B coefficient, equations (12) and (13) 
C coefficient, equations (15) and (16) 
F characteristic function, equation (17) 
g gravitational acceleration constant 
H height of enclosure 
K permeability 
M number of cells in horizontal direction 
N number of collocation point 
p pressure 
R Rayleigh number 
T temperature 
u horizontal velocity 
V vertical velocity 
s horizontal coordinate 
Y vertical coordinate. 

Greek symbols 

; 
thermal expansion coefficient 
normalized height of baffle 

K thermal diffusivity 

1 normalized distance from baffle to left wall 
P viscosity 
p density 

i 
aspect ratio, width to height 
equations (10) and (14) 

$ stream function. 

Superscripts 
’ dimensional total quantity 
C critical value. 

Subscripts 
1 upper boundary 
h lower boundary 
n number in series 
x alax 
Y alay 
0 reference value 
I left region 
2 right region. 

is to investigate the variation of the stability charac- 
teristics, in terms of the critical Rayleigh number as 
well as the critical flow patterns, due to the presence 
of a vertical baffle. 

2. PROBLEM FORMULATION AND METHOD 
OF SOLUTION 

Figure 1 shows the situation. A rectangular box of 
height Hand width oH is filled with a fluid-saturated 
porous medium. A vertical baffle of height PH 
(0 ,< fi ,< 1) is located at a distance of /1H from the 

Y’ 

FIG. 1. Schematic description of the physical problem. 

left wall. The side walls and the baflle are adiabatic. 
The top and bottom wails are isothermal and at tem- 
peratures r, and T,, (> T,), respectively. The limiting 
case p = 0, in which the vertical baffle had vanished 
and its corresponding convective stability had been 
discussed by, for instance, Caltagirone [3], will be 
discussed in Section 3. It is assumed that the Darcy- 
Boussinesq model governs the flow in the porous 
medium and the principle of exchange of instabilities 
holds for the present situation [12, 131. The Darcy- 
Boussinesq model is applicable in a wide variety of 
porous media, in which the permeability ranges from 
approximately lo-’ to 10s6, and we choose 1O-4 for 
the present analysis. 

Let u’ and u‘ be the velocity components in the x’ 
and y’ directions, respectively. The governing equa- 
tions are [I41 

v’ = -: {p;., +pog[1-Lx(T’- T/)1} (2) 

uy$ +v’T;. = K(T& + I-;,,,, (3) 

u:, + v;,, = 0. (4) 

Here K is the permeability, p the dynamic viscosity, p 
the pressure, p,, the fluid density at temperature T,, g 
the gravitational acceleration, CI the thermal expansion 
coefficient, T’ the temperature and K the effective ther- 
mal diffusivity of the porous medium being defined as 
IC = ~~4 + K, (1 - $), where Kr and K, are the thermal 
diffusivity of the liquid and the solid, respectively, and 
4 the porosity of the porous medium. We perturb 
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from the state of pure conduction and non- 
dimensionahze the linearized equations by the scales 
T’ = T,,- AT(y - T), ti = KU/H, v’ = KU/H, x’ = Hx, 
and y’ = Hy, where AT = T,- T,. After pressure is 
eliminated, the linearized equations are 

u.~ -v, = - RT, (5) 

- v  = T.c.r + T,, (6) 

u, + vy = 0 (7) 

where R is the Rayleigh number defined as 
R = Kccp,gHAT/ptc. After introduction of a stream 
function II/ satisfying u = I,+,,, v = - $,, one obtains 

V’i+Q = -Rrx;, $.r = V’T. 

These two equations can be combined into 

(8) 

V”$ + R$,, = 0. (9) 

Equation (9) is to be solved with the boundary con- 
ditions that II, and GJY be zero on the top and bottom 
boundaries, and $ and ll/I,Y be zero on the baffle and 
the side walls. The condition $rY = 0 on the horizontal 
boundaries is due to the constant temperature con- 
dition T = 0 along the boundaries, which in turn leads 
to r, = 0 and thus 1(11:” = 0 according to equation (8). 
Similar derivation applies for $,,r = 0 for the vertical 
boundaries including the baffle. At the intersection of 
the vertical baffle and the horizontal bottom boundary 
the condition $,,r = 0 is prescribed. The lowest eigen- 
value of R for which nontrivial 1(1 exists is the critical 
Rayleigh number R’. 

Due to the presence of the baffle, the determination 
of R’ as the function of Q, /I and 1 is no longer valid 
by using the normal mode analysis. We hence present 
a method utilizing eigenfunction expansion and col- 
location to solve the problem. We first separate the 
enclosure into two regions by a vertical straight line 
along the baffle. Let 11/, be the solution to the left 
region and J/Z the solution to the right region. In the 
left region, the general solution of Ic, , can be expressed 
by the following series 

$l(x9~) = f, sin(nvMdx). (10) 

By substituting equation (10) into equation (9), one 
finds that I#J I” satisfies 

$J;:+ (R-2n’nz)c#& +n?r#~ ,n = 0. (11) 

The boundary conditions $,(O,y) = 1(1&O, y) = 0 
yield two forms of 4,. for different values of R. For 
R < 4n2x2, r#~ ,n is expressed as 

4 ,n = B,, cash (ax) sin (bx) +B& sinh (ax) cos (bx) 
(12) 

wherea = J(n’n’-R/4), b = J(R/4). For R > 4n2x2, 
4 I” becomes 

q5 I” = B,, sin (cx) + Bh sin (dx) (13) 

where c = J(R/4)+J(R/4-n*x*), and d = J(R/4)- 
J(R/4-n2n2). 

Similarly for the right region the stream function 
$2 can be written as 

tidx,~) = f sin kwM&) (14) 
n= I 

where if R < 4n2n2 

c$2n = C,, cash [a(x-o)] sin [b(x-u)] 

+C,sinh[a(x-tr)]cos[b(x-o)] (15) 

and if R 3 4n2n2 

411 = C,,sin[c(x-a)]+C,,sin[d(x-a)]. (16) 

Since $, and ti2 are to satisfy mixed boundary con- 
ditions along the dividing line at x = 1, the boundary 
conditions for 0 < y ,< p are that the stream functions 
and their second horizontal derivative vanish ; while 
for /l < y < 1, the stream functions and their first 
three horizontal derivatives are continuous. We take 
a finite number of terms, say n = 1-N in the series 
represented by equations (10) and (14). This gives N 
interior points, evenly spaced, along 0 < y < 1, x = 1. 
In order to obtain nontrivial values of B’s and C’s, 
the determinant of the coefficient matrix of 4N by 4N 
is set to zero, yielding a characteristic equation 

F(R, c, 1, j) = 0. (17) 

Equation (17) is nonlinear and will be solved numeric- 
ally for the smallest R (R’). Regarding 0, /l and 1 as 
being known a priori, the eigenvalue R’ of equation 
(17) is sought using a bisection algorithm. 

3. RESULTS AND DISCUSSION 

To determine the required number of collocation 
points as well as the number of terms (N) in series 
of equations (10) and (14) for yielding an accurate 
solution, we compute the R’ for /l = 0, for which the 
exact solution can be obtained from equation (17) as 
follows [ 1 I] 

(18) 

where J(M(M- 1)) < Q < J(M(M+I)) and M 
accounts for the number of cells in the horizontal 
direction. It is found that the calculated R’ differs 
from the exact solution of equation (18) by less than 
0.01% when N = 50 is used. We thus use N = 50 for 
the subsequent calculations in this paper. We note 
that the minimum of R’ (=4n*) occurs at integer 
values of u and the local maximum occurs at Q = J2, 
J6, J(12), JQO), J(~o), and so on. We shall call 
these a corresponding to the local maximum of R’ the 
nodal values. 

To examine the influence of the baffle on the sta- 
bility characteristics, we first focus on the case of a baffle 



1900 F. CHEN and C. Y. WANG 

FIG. 2. Variation of R' vs /I for various (T when A/u = 0.5. 
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extending vertically from the middle of the bottom 
boundary, i.e. the centered baffle case. The variations 
of R’ vs /3 for different c are shown in Fig. 2. For 
D = 0.3, R’ increases monotonically with /I first, 
reaches a constant (R’ = 458.63) at aproximately 
p = 0.71 and remains at the same value for larger p. 
The constant R’ for fl > p’, the critical value at which 
R’ reaches the maximum, means baffles of sufficient 
height have the same effect on the stability as totally 
partitioning the enclosure. For cr = 0.5 and 1, similar 
trends for R’ varying with /I are found and the p 
are approximately 0.51 and 0.13, respectively. The 

d 

maximum values of R’ for G = 0.5 and 1 are, respec- 
tively, 178.27 and 61.68. For D = 2, the presence of the 
centered-baffle does not influence the stability since R’ 
remains constant (39.48) for all the p considered. 

To gain physical insights into the onset of insta- 
bility, we present the critical streamline patterns for 
the case of CT = 0.5. The streamline patterns shown in 
the figures account for the flow which occurs at the 
onset of convection, where the quantity is negligibly 
small due to the consideration of small disturbance. 
The flow pattern at onset, however, is likely to sustain 
to some extent in the nonlinear regime for most of the 
convective flow and thus can be representative for the 
convection of the system. Figures 3(a)-(h) illustrate 
the critical streamline patterns for 1 = 0.25 and fi 
varying from 0 to 0.6. For p = 0 (Fig. 3(a)), a uni- 
cellular convection occurs in the enclosure. For 
j3 = 0.1 (Fig. 3(b)), the convection cell occurs in the 
region above the baffle and the fluid in the regions 
beside the baffle is virtually stagnant. As p increases 
further but less than j3’ = 0.51 (Figs. 3(c)-(f)), the 
unicellular convection prevails and the convection is 
largely confined to the region above the baffle. As #I 
increases beyond ,Y (Figs. 3(g) and (h) for j3 = 0.52 
and 0.6, respectively), the convection becomes bicellu- 
lar where the baffle coincides with the dividing stream- 
line of these two cells. Consequently, for fl > PC, the 
change of the baffle’s height no longer has any influ- 
ence on the stability characteristics. 

To examine the influence of an off-centered baffle 
on the stability, three different enclosures with 
Q = 0.5, 1, and 2 are considered. Since the symmetry 
of the baffle’s position with respect to the center of 

FIG. 3. Critical streamline patterns for various /I when u = 0.5 and I = 0.25: (a) p = 0; (b) p = 0.1; 
(c) fi = 0.2; (d) b = 0.3; (e) /I = 0.4; (f) /I = 0.5; (g) j = 0.52; (h) p = 0.6. 
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FIG. 4. Variation of R’ vs p for various I : (a) u = 0.5 ; (b) (r = I ; (c) (r = 2. 

enclosure holds, we shall only consider the cases in 
which the baffles are placed in the right half of the 
enclosure, i.e. 0.5 < A/D < 1. For c = 0.5, the varia- 
tions of R' vs /3 for various 1 are shown in Fig. 4(a). 
For 1 = 0.25, a centered-baffle case, R' increases 
monotonically with /l first, reaches a constant at /3 
and remains at the same value for higher /l. For 
0.25 < 1 < 0.5, off-centered baffle cases, R’is a mono- 
tonically increasing function of p for p < /P, which 
lies approximately at 0.51 for all u considered, and 
becomes a decreasing function for /3 > PC. For D = I, 
the variation of R' vs p (Fig. 4(b)) shows a similar 
trend to that for D = 0.5. The values of p’ for 1= 0.5, 

d 

0.6,0.7,0.8and0.9areapproximate1y0.13,0.31,0.32, 
0.33 and 0.41, respectively. For Q = 2, the situation 
becomes more complex. The R' curves (Fig. 4(c)) 
show crossovers as I varies. In general, the curves of 
R' for c < J2, in which the onset of convection is uni- 
cellular, tend to be flatter than those for CT > J2, in 
which a bicellular convection prevails. It is also found 
that the placement of the baffle at A = 1.414 (more 
precisely, it should be J2) results in the most stable 
state compared with other cases considered. This is 
due to the fact that the critical streamline pattern is 
of largest aspect ratio compared with the other cases. 

Again, we present the critical streamline patterns 

M Q 0 

e 

I!! 

0 

f 

~ 0 
i 

D-l 

0 

.j 

FIG. 5. Critical streamline patterns for various /3 when u = 0.5 and 1 = 0.3: (a) /I = 0. I ; (b) b = 0.2; 
(c) B = 0.3; (d) /3 = 0.4; (e) j = 0.5; (f) /3 = 0.6; (g) B = 0.7; (h) p = 0.8; (i) p = 0.9; Q) /II = I. 
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for (T = 0.5, 1 = 0.3 in Figs. 5(a)-(j). In general, for 
p < 8’ (= 0.51), the onset of convection occurs largely 
in the region above the baffle and, for /I > j’, the 
onset of convection mainly occurs in the left region, 
which has larger space and hence it is generally easier 
for the convection to set in. Near /?’ (see Fig. 5(e) 
for /I = 0.5), the convection cell appears to be in a 
transition mode between a high aspect ratio cell to a 
low aspect ratio cell. Physically, from the observation 
of R’ and the corresponding critical streamline 
patterns, it is found that a taller baffle does not neces- 
sarily result in a more stable state; moreover, it reveals 
that the most stable state is associated with the most 
crooked (least rectangular) critical streamline pattern, 
which is somehow more difficult to generate. That the 
stability does not increase with a taller baffle is due to 
the application of the Darcy model for the porous 
medium, in which the non-slip boundary condition 
on the rigid boundary cannot be prescribed. As a 
result, the change of critical streamline patterns due 
to varying baffle solely plays a crucial role in deter- 
mining the stability characteristics. 

From previous results, it is found that both the 
height and position of the baffle play decisive roles in 
determining the stability of the basic state of conduc- 
tion. One also notes that the most stable state is associ- 
ated with some particular values of 1, B, and u. We 
shall thus in the following systematically seek the 
relations between these three parameters for which 
the most stable state may be obtained. 

To examine the position of the baffle at which the 
most stable state occurs, we consider two enclosures 
of g = 3 and 4 for 0 < fi < 1 and the results are shown 
in Figs. 6(a) and (b), respectively. For u = 3 (Fig. 
6(a)), there are two local maxima of R’ occurring at 
,I= 1.5 and 2.45 (~,/6) for p > 0 ; wherein the R’ at 
1 = 1.5 is the largest. Physically, it means for an 
enclosure with aspect ratio c = 3, a centered-baffle 
will lead to the most stable state while an off-centered 
baffle sitting at 1 = 46, the second nodal value, results 
in the second most stable state. A baffle positioned at 
2 = 2, where the dividing streamline is located, results 
in the same stability (R’ = 47r*) without the baffle; 
which, accordingly, corresponds to a most unstable 
state. For u = 4 (Fig. 6(b)), the centered-baffle results 
in a most unstable state (because it overlaps the divid- 
ing streamline) whereas off-centered baffles located at 
the nodal values (I = ,/6 and ,,/(12)) correspond to 
the relatively most stable states ; wherein the value R’ 
corresponding to 1 = J6 is the largest. From Fig. 6, 
a conclusion can be reached that, despite varying b, 
the baffle’s position corresponding to the most stable 
state is either at the center or at the nodal values. To 
illustrate this more precisely, the value of 1 cor- 
responding to the most stable state is summarized in 
Fig. 7, in which the horizontal segments of the curve 
correspond to centered-baffles and the inclined curves 
represent the baffles located at nodal values. The dot- 
ted lines serve merely as connecting lines between the 
horizontal segments and the inclined curves. Each 
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FIG. 6. Variation of R' vs I for various /3: (a) cr = 3 ; 

(b) u = 4. 

dotted line is associated with a bifurcation point (lying, 
respectively, at CT = 1.43, 3.26, 5.20, 7.16 and 9.13) at 
which a centered-baffle leads to the same stability as 
that due to an off-centered baffle located at the nodal 
value. 
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0.0 1- 
0.0 2.0 4.0 6.0 6.0 10.0 

0 

FIG. 7. The baffle’s position in terms of ,I/g corresponding 
to the most stable state for enclosures with aspect ratio in 

o<ug 10. 
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FIG. 8. Variation of R’ vs /I for various 1: (a) u = 3 ; 
(b)u=4;(c)a=5. 

Table 1. The 8’ and corresponding R’ for various 1 and (r 

u I B R’ 

0.5 0.25t 0.51 - 1 178.27 
0.30 0.51 149.07 
0.35 0.53 115.71 
0.40 0.53 93.68 
0.45 0.53 77.01 

1.0 0.50t 0.13 - 1 61.68 
0.60 0.33 58.39 
0.70 0.33 53.33 
0.80 0.35 49.09 
0.90 0.41 45.37 

2.0 1 .oo 0.00 - 1 39.48 
I .20 0.63 41.05 
1.40 0.67 44.38 
1.414f 1.00 44.42 
1.60 0.37 43.21 
1.80 0.35 42.00 

3.0 1.5ot 0.07 - 1 42.84 
1.586 0.47 42.24 
1.70 0.47 41.05 
2.20 0.47 40.18 
2.45 I .oo 41.13 
2.80 0.35 40.61 

4.0 2.00 0.00 - I 39.48 
2.20 0.69 39.87 
2.45t 1 .oo 41.13 
2.586 0.41 40.75 
2.80 0.45 39.92 
3.20 0.43 39.89 
3.464 1.00 40.30 
3.70 0.35 40.18 

5.0 2.50t 0.15 - I 40.81 
2.55 0.52 40.68 
2.80 0.58 39.74 
3.20 0.52 39.73 
3.464 I .oo 40.30 
3.586 0.41 40.19 
3.80 0.41 39.77 
4.20 0.41 39.76 
4.472 1 .oo 39.97 
4.60 0.40 39.95 

As far as the baffle’s height is concerned, we con- 
sider 0 = 3, 4 and 5 and the variations of R' vs /I for 
various 1 are shown in Figs. 8(a)-(c), respectively. In 
these figures, the dotted curves correspond to baffles 
located either at the nodal value or at the center and 
the solid curves to other cases. As one can see, the R' 
for a centered-baffle (if it is not located on a dividing 
streamline) increases with /I first, reaching a maximum, 
and remains at the same value for higher 8. The R' 
for an off-centered baffle located at the nodal value, 
however, is a monotonically increasing function of p 
and the maximum of R' occurs at 8’ = 1. For off- 
centered baffles located at non-nodal positions, R' 
is an increasing-decreasing function of /? and 
0 < 8’ < 1. We tabulate in Table 1 the 8’ and cor- 
responding R' for various 1 and Q. It is found, quite 
interestingly, that for a particular Q, the p’ for the 1 
belonging to the same value of Mare of approximately 
the same values. For instance, for u = 2, the p’ for 
1 < 1 < J2 (belonging to M = 2) are similar and so 
are those for ,/2 < 1 < 2 (belonging to M = 3). In 
addition, the p” for the 1 corresponding to the smaller 
M are generally larger than those of the larger M. In 

t The 1 for the most stable state of a particular B. 

other words, an off-centered baffle located closer to 
the center needs to be taller in order to attain the most 
stable state than one located further from the center. 

4. CONCLUDING REMARKS 

From previous discussions, we can draw several 
conclusions concerning the influence on the stability 
in enclosures containing a fluid-saturated porous 
medium due to the presence of a vertical insulating 
baffle : 

(1) The change of the stability due to the presence 
of a baffle is a result of the change of the onset con- 
vection patterns. 

(2) Baffles at center or at nodal values correspond 
to a relatively more stable state. 

(3) A taller baffle does not necessarily result in a 
more stable state. For a centered-baffle, the most’stable 
state occurs for p > /P, in which further increase of 
the baffle’s height does not lead to any change in 
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stability. For an off-centered baffle located at a nodal 
value, the most stable state occurs at p = 1. For 
baffles at other positions, the most stable state occurs 
in the range 0 < p < 1, where the values of p’ vary 
with 1 but are similar to those of baffles located at 
positions within the same value of M. 

As far as the engineering application is concerned, 
due to the fact that the aspect ratio o affects sig- 
nificantly the stability in enclosures [ 12, 131, especially 
when o is less than unity and the quiescent state 
becomes more stable, it is advantageous to partition 
the porous medium into tall, long regions so that a 
better insulation between top and bottom boundaries 
of the enclosure can be obtained. Instead of complete 
partitions which are expensive to build and install, 
according to the present results, the same or even 
better result of increasing stability can be achieved 
with partial baffles at a relevant position. A possible 
application of our results is in the design of the ceiling 
joists covered by a layer of insulation. The placement 
and size of the joists are currently determined only by 
structural requirements. Perhaps the joists may be 
redesigned to further serve as baffles to lower the heat 
loss through the ceiling. 
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